Los gigantescos detectores ATLAS y CMS del Gran Colisionador de Hadrones (LHC) del CERN han observado una partícula desconocida hasta ahora que con mucha probabilidad se corresponde con el bosón de Higgs, la partícula que explica porqué tienen masa la mayoría de las demás.
Así lo han confirmado hoy los responsables de los dos experimentos en un seminario celebrado en la sede del CERN cerca de Ginebra, en conexión directa con los científicos de la mayor conferencia anual sobre física de partículas, ICHEP2012, que se celebra en Melbourne (Australia).
“Hemos observado señales claras de una nueva partícula en el nivel de 5 sigma en la región de la masa alrededor de 126 gigaelectronvoltios (GeV)”, subraya Fabiola Gianotti, la portavoz del experimento ATLAS. El valor 5 sigma significa tener una confianza del 99,99994%, y es el nivel aceptado por la comunidad científica para confirmar el descubrimiento de una partícula. Aun así, “se necesita un poco más de tiempo para preparar estos resultados para su publicación”, ha reconocido la investigadora.
Por su parte, el portavoz del experimento CMS, Joe Incandela, también destaca: “Los resultados son preliminares, pero es espectacular la señal de 5 sigma [aunque en su presentación ha indicado 4,9] en alrededor de 125 GeV que estamos viendo. Esto de hecho es una nueva partícula. Sabemos que debe ser un bosón y es el más pesado que se ha encontrado”.
“Las implicaciones son muy importantes y es precisamente por esta razón que debemos ser muy diligentes en todos nuestros estudios y realizar comprobaciones cruzadas”, ha declarado Incandela.
“Es difícil no emocionarse con estos resultados”, dice el director de investigación del CERN, Sergio Bertolucci. “Dijimos que en 2012 encontraríamos un nuevo tipo de partícula como Higgs o excluir la existencia de un modelo estándar con Higgs. Con toda la prudencia necesaria, me parece que estamos en un punto de bifurcación: la observación de esta partícula nueva, indica el camino para el futuro hacia una comprensión más detallada de lo que estamos viendo en los datos”.
Resultados preliminares
Los resultados presentados hoy se consideran preliminares, según el CERN. Se basan en datos recogidos este año y el pasado, con la información de 2012 aún bajo análisis. La publicación de los análisis que se han mostrado hoy se esperan para finales de julio. Una imagen más completa de las observaciones de hoy saldrán a finales de este año después de que el LHC proporcione los experimentos con más datos.
El siguiente paso será determinar la naturaleza exacta de la partícula recién descubierta y su importancia para nuestra comprensión del universo. ¿Coinciden sus propiedades con las esperadas para el bosón de Higgs, la última pieza del denominado modelo estándar de física de partículas, o se tratará de una versión más exótica de la esperada?
En cualquier caso, el director general del CERN, Rolf Heuer, destaca que se ha alcanzado “un hito en nuestra comprensión de la naturaleza”. “El descubrimiento de una partícula en consonancia con el bosón de Higgs abre el camino a estudios más detallados, lo que requerirá grandes estadísticas, y es probable que arroje luz sobre otros misterios de nuestro universo”.
El físico británico Peter Higgs, que también ha estado presente durante el anuncio, postuló en 1964 un mecanismo que se conoce como el 'campo de Higgs', una especie de continuo que se extiende por todo el espacio repleto de los bosones bautizados con su apellido.
“Se trata de un tipo de partícula con un papel considerado fundamental en el mecanismo por el que se origina la masa del resto de las partículas elementales”, comenta García. “Sin masa, el universo sería un lugar muy diferente. Por ejemplo, si el electrón no tuviera masa, no habría átomos, con lo cual no existiría la materia como la conocemos. No habría química, ni biología, ni existiríamos nosotros mismos”.
El campo de Higgs
Pero no todas las partículas tienen masa. Algunas, como los denominados 'gluones', carecen de ella. Para explicar estas diferencias, el físico británico Peter Higgs postuló en los años 60 del siglo XX un mecanismo que se conoce como el 'campo de Higgs', una especie de continuo que se extiende por todo el espacio. “La masa de las partículas estaría causada por una ”fricción“ con el campo de Higgs, por lo que las más ligeras se moverían por este campo fácilmente mientras que las más pesadas lo harían con mayor dificultad”, explica Carmen García.
La investigadora aclara que, al igual que el fotón es el componente fundamental de la luz, el campo de Higgs requiere de la existencia de sus propias partículas: los bosones de Higgs. “Se trata de la última pieza que falta para completar el denominado Modelo Estándar de Física de Partículas”.
Hay un fascinante exceso de eventos en torno a los 125 GeV
Este modelo es el pilar de la física actual, que describe bastante bien lo que se sabe de las partículas elementales (bosones y fermiones que, a su vez, se dividen en leptones y quarks) que componen todo lo que vemos. También explica cómo interaccionan entre ellas mediante las cuatro fuerzas fundamentales (electromagnética, nuclear fuerte, nuclear débil y gravitatoria), pero no aclara el misterio de la masa.
“Confirmar la existencia del bosón de Higgs en el modelo estándar supondría haber comprendido el mecanismo por el cual las partículas adquieren masas –insiste Teresa Rodrigo–, un mecanismo que en su versión más simple predice la existencia de –al menos– un bosón que cuando interacciona con las otras partículas (quarks, leptones y otros bosones), hace que estas adquieran masa”.
Pero la científica y presidenta del Consejo de la Colaboración CMS también recuerda lo difícil que es detectarla: “El boson de Higgs 'vive' un tiempo muy corto, es decir, se desintegra enseguida en otras partículas y se existen cinco posibilidades más probables en el rango de masas que ahora se está estudiando”.
Según los últimos datos tomados tanto en el LHC como en su jubilado competidor de EE UU, el Tevatrón del Laboratorio Fermilab, ese rango oscila entre 115 y 135 gigaelectronvoltios (GeV). Recientemente la portavoz del experimento ATLAS, Fabiola Gianotti, fue más allá y concretó que se había empezado a ver un “fascinante exceso de eventos” en torno a los 125 GeV. Es probable que mañana se pueda confirmar este extremo.
La desintegración en dos fotones
Respecto a las cinco posibilidades de desintegración en otras partículas, “según sea su masa –dice Rodrigo– decaerá con más o menos frecuencia en dos fotones, dos bosones W, dos bosones Z, dos quarks bottom o dos leptones taus”. ¿Cuál de las cinco es la más probable? Los rumores apuntan a que mañana se anunciará la primera: dos fotones, pero hay que esperar.
De todas formas no es la única partícula que se puede desintegrar de esta manera. “Si se detectan dos fotones en las colisiones, no se sabe si han sido producidos por un bosón de Higgs o por otra partícula distinta”, apunta Carmen García. “La evidencia de la existencia del bosón de Higgs se muestra como un exceso de señales respecto a la esperada en los procesos conocidos: es un proceso estadístico”.
Para medir esta estadística, los científicos trabajan con un concepto denominado 'sigma'. Por ejemplo, esta semana los responsables del Tevatrón han presentado evidencias sobre el bosón de Higgs con un nivel de certeza 2,9 sigma. Esto implica que solo hay una posibilidad entre 550 de que la señal que han detectado se deba a una fluctuación estadística. Para confirmar la existencia del famoso bosón se necesita mayor certeza: 5 sigma. Es probable que en el LHC casi se haya alcanzado esa cifra, probablemente entre 4,5 y 5, pero hasta mañana no conoceremos la respuesta.
La evidencia de la existencia del bosón de Higgs es un proceso estadístico
“Si hay excesos de datos en una región de masa dada –consistente con la posible producción de un bosón de Higgs–, la estadística actual será insuficiente para concluir firmemente que este exceso se deba sin lugar a dudas a su existencia –reconoce Rodrigo–. Si esto ocurriera, necesitaremos muchos más datos para estudiar en detalle las propiedades de este exceso y poder afirmar sin ambigüedad la naturaleza de la observación, es decir, si es o no el bosón de Higgs predicho por el modelo estándar”.
“Esto lo podremos realizar en aproximaciones sucesivas, y sin duda el análisis de todos los datos que podamos recoger hasta el final de este año 2012 nos permitirá avanzar de forma muy significativa”, añade la investigadora.
En esta línea coincide García: “Para que un resultado, en particular el descubrimiento del bosón de Higgs, pueda confirmarse debe tener la suficiente significación estadística, que los físicos medimos en 'desviaciones estándar', la cual, a su vez, depende de la cantidad de datos acumulada: cuanto mayor sea este número (medido en una unidad llamada 'femtobarn inverso'), mayor es la probabilidad de que una medida se considere un auténtico descubrimiento”.
A pesar del anuncio de mañana, la comunidad científica piensa que no será hasta finales de 2012 cuando la cantidad de datos total obtenida por los experimentos ATLAS y CMS del LHC permita confirmar o descartar definitivamente la existencia del bosón de Higgs.
“Su descubrimiento supondría una mejor comprensión del universo y ejercería de impulso para la investigación”, concluye Carmen García. “Sería el comienzo de una nueva fase en la física de partículas”.